Intraseasonal variability of sea surface height in the Bay of Bengal
نویسندگان
چکیده
[1] Intraseasonal variability (ISV) of sea surface height (SSH) over the Bay of Bengal (BoB) is studied using altimetry data and an eddy-resolving ocean model. In both the model hindcast and satellite observations, large SSH ISV is found along the eastern and northern coasts of the BoB, in the western BoB, and in a zonal band across the Bay centered near 5 N. The ISV displays a clear seasonality. In the western BoB, it reaches its annual maximum in spring, whereas it does so in summer and autumn southeast of Sri Lanka. Driven by equatorial intraseasonal winds, equatorial Kelvin waves propagate eastward, reach the western coast of Sumatra, and reflect there to propagate around the perimeter of the BoB as coastally trapped waves. Two distinct bands of high eddy activity are detected in the western and central BoB, respectively. In both bands, isolated eddies propagate southwestward. Eddy formation in the eddy train in the central Bay is linked to the coastal wave as it bends around the corner of the Irrawaddy Delta off Myanmar. Eddy activity contributes to the high ISV in the central Bay to some extent. An energetics analysis indicates that high total eddy energy in the western BoB is due to barotropic/ baroclinic instability of the mean current.
منابع مشابه
A note on the deficiency of NCEP/NCAR reanalysis surface winds over the equatorial Indian Ocean
[1] The seasonal cycle and intraseasonal variability of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP) reanalysis surface winds over the Indian Ocean (IO) are assessed by comparing them with in situ surface observations from two moored buoys and winds from the SeaWinds scatterometer on the QuikSCAT satellite. The buoys are located in the centra...
متن کاملSea Surface Temperature of the Bay of Bengal Derived from the TRMM Microwave Imager*,1
The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) with the capability of measuring sea surface temperature (SST) in the presence of clouds, has been providing an unprecedented view of tropical basin-scale SST variability. In this paper, an assessment of the accuracy of the SST derived from TMI over the Bay of Bengal using in situ data collected from moored buoys and research...
متن کاملSea Surface Temperature of the Bay of Bengal Derived from the TRMM Microwave Imager*,+
Article Summary) The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) with the capability of measuring sea surface temperature (SST) in the presence of clouds, has been providing an unprecedented view of tropical basin-scale SST variability. In this paper, an assessment of the accuracy of the SST derived from TMI over the Bay of Bengal using in situ data collected from moored b...
متن کاملLate Glacial to Holocene Indian Summer Monsoon Variability Based upon Sediment Records Taken from the Bay of Bengal
Paleoclimatic records from the Bay of Bengal are rare. We reconstruct the sea-surface temperature (SST) and salinity from paired δ18O and Mg/Ca measurements in planktonic foraminifera Globigerinoides ruber from the western Bay of Bengal core VM29-19. Our data suggest that SST and seawater δ18O (δOsw) were ~3°C colder and ~0.6‰ depleted, respectively, during the Last Glacial Maximum (LGM) compar...
متن کاملOcean–Atmosphere Coupling in the Monsoon Intraseasonal Oscillation: A Simple Model Study
A simple coupled model is used in a zonally symmetric aquaplanet configuration to investigate the effect of ocean–atmosphere coupling on the Asian monsoon intraseasonal oscillation. The model consists of a linear atmospheric model of intermediate complexity based on quasi-equilibrium theory coupled to a simple, linear model of the upper ocean. This model has one unstable eigenmode with a period...
متن کامل